Effects of Agile Methods on Website Quality for Electronic Commerce

by David F. Rico
AGENDA

Preface
Introduction
Research Problem
Literature Review
Conceptual Framework
Research Method
Data Analysis
Conclusion
Author

DoD Contractor
with 24+ Years of Experience

- Large-scale NASA and DoD programs in U.S., Japan, and Europe
- Five books and 13 articles on management of information technology

Overview

| Motivation | Study effects of using agile methods to produce e-commerce websites
| | E-commerce has grown into a $2.4 trillion per year U.S. industry
| | Poor website quality costs firms up to 90% of these revenues
| Problem | Agile methods are based on craft industry principles to speed design
| | Traditional methods are based on scientific management principles
| | Agile methods may not have the quality controls of traditional ones
| Approach | Developed conceptual model of agile methods and website quality
| | Collected data from 250 individuals producing e-commerce websites
| | Analyzed the relationships between agile methods and website quality
| Findings | 68% of our respondents were using principles of agile methods
| | 80% of respondents attributed use of agile methods to various benefits
| | 50% of the factors of agile methods were related to high website quality
| Summary | Developed a new framework for analyzing the effects of agile methods
| | There is some evidence linking agile methods to better website quality
| | More gains may be possible by better implementation of agile methods |
Key Terminology

| **E-Commerce** | Use of telephone, networks, or the Internet for monetary transactions
| | Automation of business transactions such as buying, selling, & delivery
| | Application of technology to help buyers and suppliers improve efficiency |
| **E-Commerce Website** | Collection of Web pages, images, videos, sound, or other digital assets
| | Hosted on Web servers connected to the Internet, intranets, or devices
| | Sharing information, maintaining relationships, or executing transactions |
| **Website Quality** | Customer’s view of a website’s overall excellence or superiority
| | Attitude based on comparing expectations to perceived performance
| | Efficient and effective shopping, purchasing, and delivery of products |
| **Traditional Method** | Product design process based on scientific management principles
| | Sequential process of analysis, design, coding, and integration testing
| | Formalized activities, reviews, documents, and a quality control regimen |
| **Agile Method** | New product development process based on craft industry principles
| | Small teams inject customer feedback into frequent software releases
| | Software is designed to evolve, grow, and change to satisfy user needs |
Introduction

| **Internet** | Rapid convergence of PCs. Windows 95, and Netscape in 1995
| | Internet technologies also enabled websites to be built very quickly
| | Number of computers on the Internet increased 41 times to 13 million |
| **E-Commerce** | Internet became a medium for conducting business transactions
| | Enabled the instant exchange of trillions of dollars on a global scale
| | Websites became the basic tool for conducting electronic commerce |
| **Growth** | Number of websites has increased 5,936 times to 136 million
| | Number of Internet users has increased 78 times to 1.3 billion
| | Number of Internet shoppers has increased 51 times to 147 million |
| **Stakes** | U.S. e-commerce revenues have grown 96 times to $2.4 trillion
| | 60% to 90% of Internet shoppers abandon poor quality websites
| | Poor website quality results in losses of $204 billion to $1.2 trillion |
| **Purpose** | Managers began using agile methods based on craft industry principles
| | Experts in scientific management principles linked them to poor quality
| | Purpose is to study the effects of agile methods on website quality |
Internet Websites

136 Million Websites

- 5,936-fold increase in number of websites from 1995 to 2007
- Websites tripled annually from 1997 to 2000 (30% annual growth)
- Internet hosts doubled annually from 1995 to 2000 (30% annual growth)

1.25 Billion Internet Users

- 78-fold increase in number of Internet users from 1995 to 2007
- U.S. represents 19% of total international Internet users (235 million)
- No. America has the highest number of Internet users per capita (69%)

147 Million Internet Shoppers

- 51-fold increase in number of Internet shoppers from 1995 to 2007
- 147 million U.S. Internet shoppers conducted 633 million transactions
- Internet buyers trail Internet shoppers by an average rate of 60% to 90%

Internet Commerce

$2.4\text{ Trillion}
E-Commerce Revenues

- 96-fold increase in e-commerce revenues from 1995 to 2007
- Total U.S. e-commerce revenues reached $2.4 trillion in 2007
- Total U.S. e-retail revenues range from $93 billion to 136 billion

U.S. E-Commerce Revenues (billions)

- $189.0 (8%)
- $2,211.3 (92%)

U.S. E-Retail Revenues (billions)

- $3.1 (4%)
- $1.2 (1%)
- $0.8 (1%)
- $3.2 (4%)
- $10.0 (12%)
- $2.2 (3%)
- $2.1 (3%)
- $1.2 (1%)
- $19.8 (24%)
- $1.0 (1%)
- $12.3 (15%)
- $22.4 (26%)

- Apparel
- Books
- Food/Drug
- Hardware
- Health
- Jewelry
- Dept. Store
- Office Supplies
- Sporting Goods
- Toys/Hobbies
- Specialty

Source. U.S. Census Bureau (2007) and Internet Retailer (2007)
Internet Quality

1.2 Trillion
Lost to Poor
Website Quality

- 86-fold increase in lost e-commerce revenues from 1995 to 2007
- Lost sales due to poor quality range from 204 billion to 1.2 trillion
- Largest factors of poor quality are bad website design and performance

Web Surfer Frustrations

<table>
<thead>
<tr>
<th>Reasons for Web Surfer Frustration</th>
<th>Percentage of Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Plug Ins Required</td>
<td>70%</td>
</tr>
<tr>
<td>7 No Interactivity</td>
<td>60%</td>
</tr>
<tr>
<td>6 Boring Content</td>
<td>50%</td>
</tr>
<tr>
<td>5 Confusing Home Page</td>
<td>40%</td>
</tr>
<tr>
<td>4 Too Many Clicks Required</td>
<td>30%</td>
</tr>
<tr>
<td>3 Couldn’t Find Information</td>
<td>20%</td>
</tr>
<tr>
<td>2 Slow Downloading</td>
<td>10%</td>
</tr>
<tr>
<td>1 Difficult Navigation</td>
<td>0%</td>
</tr>
</tbody>
</table>

Reasons for Abandoned E-Commerce Transactions

<table>
<thead>
<tr>
<th>Reasons for Website Abandonment</th>
<th>Percentage of Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Credit Cards Not Taken</td>
<td>40%</td>
</tr>
<tr>
<td>7 Returned Product</td>
<td>30%</td>
</tr>
<tr>
<td>6 Slow Product Delivery</td>
<td>20%</td>
</tr>
<tr>
<td>5 Needed Customer Service</td>
<td>10%</td>
</tr>
<tr>
<td>4 Website Crashed</td>
<td>0%</td>
</tr>
<tr>
<td>3 Product is Unavailable</td>
<td>0%</td>
</tr>
<tr>
<td>2 Website is Confusing</td>
<td>0%</td>
</tr>
<tr>
<td>1 Website is Slow</td>
<td>0%</td>
</tr>
</tbody>
</table>

Source. Netsmart America (1999), Boston Consulting Group (2000), and MarketingSherpa (2007)
AGENDA

Preface
Introduction
Research Problem
Literature Review
Conceptual Framework
Research Method
Data Analysis
Conclusion
| **Background** | Hundreds of traditional methods were created from 1968 to 1995
| | They were designed to address the software crisis of the 1960s
| | They evolved into multi-year, multi-million dollar life cycles |
| **Problem** | New Internet technology enabled websites to be built in record-time
| | This gave rise to agile methods based on basic craft industry principles
| | Scholars complained that agile methods had insufficient quality controls |
| **Studies** | Business schools began studying agile methods in the 1990s
| | Dozens of narrowly focused studies emerged from 1998 to 2006
| | The current period is dominated by attitudinal surveys of agile methods |
| **Deficiencies** | All of the major tenets had yet to emerge at the time of the early studies
| | Newer studies were narrowly focused on one or two minor techniques
| | None of these studies were based on a scholarly conceptual model |
| **Question** | Do methods based on craft industry principles improve website quality?
| | Does the use of agile methods improve e-commerce website quality?
| | Do factors of agile methods improve e-commerce website quality? |
Evolution of Traditional Methods

- 100s of traditional methods emerged from 1968 to 1995
- Purpose was to solve the software productivity crisis of 1960s
- U.S. DoD led the development of traditional methods until mid-1990s

100s of Traditional Methods

- MIL-STD-1679
- DOD-STD-2167
- DOD-STD-2167A
- DOD-STD-7935A
- NSA-1703
- MIL-STD-498
- IEEE/EIA 12207
- ISO/IEC 12207

1970 MIL-STD-483 Configuration Management
1978 DOD-STD-480A Configuration Control
1979 MIL-S-52779A Quality
1983 MIL-STD-1815A Ada83 Language Reference
1983 DOD-STD-7935 Documentation Standards
1983 DOD-STD-1679A Software Development
1984 DOD-STD-1644B Training Software Development
1985 MIL-STD-1521B Technical Reviews and Audits
1985 DOD-STD-2167 Defense System Software
1988 DOD-STD-7935A Documentation Standards
1988 DOD-STD-2167A Defense System Software
1988 DOD-STD-2168 Defense System Software Quality
1992 MIL-STD-793 Configuration Management
1994 MIL-STD-498 Software Development
1996 IEEE/EIA 12207 Software Life Cycle Processes

What Traditional Methods Became

Multi-Year, Multi-Million Life Cycles

- Required millions of dollars in activities, documents, and reviews
- Intended for large systems like missiles, airplanes, and spacecraft
- Larger projects have greater requirements volatility and failure rates

Evolution of Agile Methods

Dozens of agile methods emerged from 1989 to 2003
• Purpose was to accelerate traditional methods from the 1990s
• Origins in systems theory and new product development from 1980s

<table>
<thead>
<tr>
<th>Systems Theory</th>
<th>New Product Development</th>
<th>Agile Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>(customer feedback and flexibility)</td>
<td>(iterative development and well-structured teams)</td>
<td>(iteration, feedback, teams, and flexibility)</td>
</tr>
<tr>
<td>• 1928 - Organismic biology (Bertalanffy)</td>
<td>• 1964 - Concept testing (Axelrod)</td>
<td>• 1999 - New development rhythm (Sulack)</td>
</tr>
<tr>
<td>• 1949 - Cybernetics (Wiener)</td>
<td>• 1968 - Systematic new product dev. (Credland)</td>
<td>• 1991 - Crystal methods (Cockburn)</td>
</tr>
<tr>
<td>• 1956 - Systems theory (Boulding)</td>
<td>• 1975 - Overlapping operations (Szczerbiński)</td>
<td>• 1993 - Scrum (Sutherland)</td>
</tr>
<tr>
<td>• 1958 - Industrial dynamics (Forrester)</td>
<td>• 1976 - Cross functional teams (Likert)</td>
<td>• 1993 - Dynamic systems development (UK)</td>
</tr>
<tr>
<td>• 1961 - Butterfly effect (Lorenz)</td>
<td>• 1976 - Customer active paradigm (Von Hippel)</td>
<td>• 1995 - Synch-n-stabilize (Cusumano)</td>
</tr>
<tr>
<td>• 1966 - Learning by doing (Levhari)</td>
<td>• 1983 - Integrated product development (Goulding)</td>
<td>• 1997 - Feature driven development (Palmer)</td>
</tr>
<tr>
<td>• 1975 - Chaos (Yorke)</td>
<td>• 1984 - User initiated innovation (Foxall)</td>
<td>• 1998 - Judo strategy (Cusumano)</td>
</tr>
<tr>
<td>• 1976 - Double loop learning (Argyris)</td>
<td>• 1986 - Lead user method (Von Hippel)</td>
<td>• 1998 - Internet time (MacCormack)</td>
</tr>
<tr>
<td>• 1982 - Adaptive organization (Anderson)</td>
<td>• 1986 - New product development game (Takeuchi)</td>
<td>• 1998 - Extreme programming (Anderson)</td>
</tr>
<tr>
<td>• 1990 - Learning organization (Senge)</td>
<td>• 1988 - Time-based competition (Bower)</td>
<td>• 1999 - Open source software (Raymond)</td>
</tr>
<tr>
<td>• 1992 - Edge of chaos (Lewin)</td>
<td>• 1989 - Simultaneous engineering (Dean)</td>
<td>• 2000 - Rational unified process (Kruchten)</td>
</tr>
<tr>
<td>• 1995 - Sense and response (Randall)</td>
<td>• 1990 - Concurrent engineering (Kusiak)</td>
<td>• 2000 - Adaptive software design (Highsmith)</td>
</tr>
<tr>
<td>• 1996 - Ecosystems (Moore)</td>
<td>• 1997 - Continuous innovation (Brown)</td>
<td>• 2001 - Agile manifesto (Beck)</td>
</tr>
<tr>
<td>• 1997 - Chaotic organizations (Hock)</td>
<td>• 1998 - Experimentation (Thomke)</td>
<td>• 2003 - Lean development (Poppendieck)</td>
</tr>
</tbody>
</table>
What Agile Methods Became

Daily, Weekly, and Monthly Life Cycles
- Involved few activities, little documentation, and a lot of coding
- Intended for small systems like Internet applications and websites
- Smaller projects have greater requirements stability and success rates

Source: Agile Manifesto (2001) and Highsmith (2002)
Traditional vs Agile Methods

Scientific Management vs. Craft Industry
- **Traditional** — Mass production, autocratic control, and defect reduction
- **Agile** — Custom products, egalitarian control, and customer satisfaction
- “Any color as long as it’s black” vs. “a car for every purse and purpose”

<table>
<thead>
<tr>
<th>Traditional Methods (scientific management principles)</th>
<th>Agile Methods (craft industry principles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Manufacturing oriented</td>
<td>- Job-shop oriented</td>
</tr>
<tr>
<td>- Mass production</td>
<td>- Mass customization</td>
</tr>
<tr>
<td>- Mass market</td>
<td>- Micro-market segmentation</td>
</tr>
<tr>
<td>- “As long as it’s black…”</td>
<td>- “Every purse and purpose…”</td>
</tr>
<tr>
<td>- Production lines</td>
<td>- Manufacturing cells</td>
</tr>
<tr>
<td>- Autocratic</td>
<td>- Egalitarian</td>
</tr>
<tr>
<td>- Centralized</td>
<td>- Decentralized</td>
</tr>
<tr>
<td>- Division of labor</td>
<td>- Empowerment</td>
</tr>
<tr>
<td>- Specialization</td>
<td>- Multi-disciplinary</td>
</tr>
<tr>
<td>- Individualism</td>
<td>- Collectivism</td>
</tr>
<tr>
<td>- Economies of scale</td>
<td>- Economies of scope</td>
</tr>
<tr>
<td>- Cost</td>
<td>- Value</td>
</tr>
<tr>
<td>- Efficiency</td>
<td>- Effectiveness</td>
</tr>
<tr>
<td>- Reliability</td>
<td>- Elegance</td>
</tr>
<tr>
<td>- Defect reduction</td>
<td>- Capability enhancement</td>
</tr>
<tr>
<td>- Quality control</td>
<td>- Customer satisfaction</td>
</tr>
</tbody>
</table>

Crux — Agile methods may be good for small websites, but may result in poor quality that costs trillions of dollars

Source. Pine (1992), Tushman and O’Reilly (1996), and Boehm and Turner (2004)
AGENDA

Preface
Introduction
Research Problem
Literature Review
Conceptual Framework
Research Method
Data Analysis
Conclusion
Literature Review

| Computer Industry | · Electronic computers emerged in the 1940s
| | · Operating systems and Internet emerged in the 1960s
| | · Software industry emerged in 1969 and grew to $394 billion in 2000s |
| Electronic Commerce | · ATM, EFT, NYSE, FAX, POS, and EDI emerged from 1964 to 1980
| | · HTML and HTTP created by Tim Berners-Lee from 1980 to 1990
| | · Pentium, Windows 95, and Netscape platform converges in 1995 |
| Software Methods | · PM, life cycles, reviews, testing, QA, and CM emerge from 1966 to 1991
| | · Structured, formal, OO, and reuse methods emerge from 1969 to 1992
| | · Prototyping, JAD, RAD, and agile methods emerge from 1982 to 1999 |
| Agile Methods | · New development rhythm, synch-n-stabilize emerge from 1989 to 1995
| | · Crystal, Scrum, DSDM, FDD, and XP emerge from 1991 to 1998
| | · Judo strategy and Internet time emerge from 1995 to 1998 |
| Software Quality | · Software attribute models created by Logicon in 1968
| | · Algorithmic models created by McDonnell Douglas in 1972
| | · User satisfaction emerged in 1974 and website quality in 1997 |
17 Major Kinds of Software Methods

- Developed one of the first timelines and histories of software methods
- Identified 17 major classes of software methods emerging since 1961
- Our 75-page literature review will be published in its entirety in 2008

Source. Rico, Sayani, and Field (2008)
AGENDA

Preface
Introduction
Research Problem
Literature Review
Conceptual Framework
Research Method
Data Analysis
Conclusion
<table>
<thead>
<tr>
<th>Conceptual Framework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agile Manifesto</td>
</tr>
<tr>
<td>- Analyzed factors from 175 interdisciplinary books and studies</td>
</tr>
<tr>
<td>- Selected final subfactors from an analysis of nine major approaches</td>
</tr>
<tr>
<td>- Synch-n-stabilize, judo strategy, and Internet time were most influential</td>
</tr>
<tr>
<td>Iterative Development</td>
</tr>
<tr>
<td>- Process of making multiple smaller products until a problem is solved</td>
</tr>
<tr>
<td>- Time-boxed, operational, small, frequent, and numerous releases</td>
</tr>
<tr>
<td>- Process of rapid experimentation similar to Pasteur and Edison</td>
</tr>
<tr>
<td>Customer Feedback</td>
</tr>
<tr>
<td>- Process of soliciting market feedback on working software releases</td>
</tr>
<tr>
<td>- Feedback solicited, received, frequency, quality, and incorporated</td>
</tr>
<tr>
<td>- Process of beta testing similar to early market concept testing</td>
</tr>
<tr>
<td>Well-Structured Teams</td>
</tr>
<tr>
<td>- Small programming teams with semi-formal managerial structures</td>
</tr>
<tr>
<td>- Team leader, vision, strategy, goals, objectives, schedules, timelines</td>
</tr>
<tr>
<td>- Specialized teams with authority and resources to solve critical problem</td>
</tr>
<tr>
<td>Flexibility</td>
</tr>
<tr>
<td>- Powerful, inexpensive, easy to use, and adaptable technology</td>
</tr>
<tr>
<td>- Small size, simple, modular, portable (JVM), and extensible design</td>
</tr>
<tr>
<td>- High productivity tools such as 4GLs, GUIMS, and program generators</td>
</tr>
</tbody>
</table>
Conceptual Model

Conceptual Model based on Agile Manifesto

- Creators of agile methods met in 2001 to outline their principles
- Outlined four broad values corresponding to our conceptual model
- Similar to NPD software methods from IBM, Microsoft, and Netscape

AGENDA

Preface
Introduction
Research Problem
Literature Review
Conceptual Framework
Research Method
Data Analysis
Conclusion
Research Method

| Research Design | Determine if the use of agile methods is related website quality
| | Survey to rapidly and economically collect as much data as possible
| | Small cross-sectional survey to measure current U.S. software methods |
| Research Instruments | Designed a 20-item agile methods instrument from conceptual model
| | Adapted the 14-item eTailQ instrument from an analysis of 80 studies
| | Performed cognitive interviews and pilot tests to evaluate instruments |
| Data Collection | Designed and posted a self-administered questionnaire on the Internet
| | Announced the survey in a major U.S. online software magazine
| | Collected data from 250 respondents in about two-weeks |
| Data Analysis | Seven-point Likert scale ranging from strongly disagree to strongly agree
| | The overall mean was 5.04 loosely corresponding to “somewhat agree”
| | We used SPSS for descriptive, correlational, and regression analysis |
| Threats to Validity | Respondents were self-selected and provided minor incentives
| | Respondents were from a contemporary online software magazine
| | Respondents were not necessarily webmasters or from Internet retailers |
AGENDA

Preface
Introduction
Research Problem
Literature Review
Conceptual Framework
Research Method
Data Analysis
Conclusion
Data Analysis

| Demographic Data | • Response rate for demographic data was very good
| | • Software engineers (38%) from the information industry (21%)
| | • 11-15 years of exp. (22%), 1-19 employees (17%), <$1M revenue (22%)
| Agile Methods Data | • Respondents generally agreed with statements about agile methods
| | • Iterative (70%), feedback (68%), teams (74%), and flexibility (61%)
| | • Agile methods factors were related using regression analysis
| Benefit Data | • Respondents generally agreed with statements about benefits
| | • Cost (74%), productivity (82%), quality (80%), and speed (81%)
| | • Benefit factors were related using regression analysis
| Website Quality Data | • Respondents generally agreed with statements about website quality
| | • Design (82%), privacy (67%), fulfillment (70%), and service (80%)
| | • Website quality factors were related using regression analysis
| Hypothesis Testing | • Agile methods were correlated to website quality in-general (0.10)
| | • Iterative development (0.04) and customer feedback (0.10) correlated
| | • Well-structured teams (0.05) and flexibility (0.03) “negatively” correlated

Sensitivity Analysis

60% Subfactors Correlated to Website Quality

- Iterative, feedback, and team subfactors correlated to website quality
- Feedback quality and small team size not correlated to website quality
- Four out of five flexibility subfactors weren’t correlated to website quality

Source: Rico, Sayani, Stewart, and Field (2007) and Rico (2008)
Hypothesis Tests

Agile Methods Correlated to Website Quality

- Aggregated model of agile methods correlated to website quality
- Iterative development and customer feedback correlated to quality
- Well-structured teams and flexibility negatively correlated to quality

Source: Rico, Sayani, Stewart, and Field (2007) and Rico (2008)
AGENDA

Preface
Introduction
Research Problem
Literature Review
Conceptual Framework
Research Method
Data Analysis
Conclusion
Conclusion

Findings
- 68% use agile methods, though 46% get poor quality customer feedback
- 80% reported positive benefits and 76% had good website quality
- 83% of respondents were from small to medium-sized firms

Limitations
- Conceptual model of agile methods is new and needs more validation
- Limited number of respondents and data from 20 different industries
- Small-scale study with non-random participants and respondents

Lessons
- Submitting stakeholder papers to conferences results in good feedback
- Doing a thorough industry analysis helps refine the research problem
- Using a simple research design ensures success of data collection

Contributions
- Designed conceptual model and survey instruments for agile methods
- Collected original data beyond mere attitudes about agile methods
- Published three articles and literature review as a book chapter

Future Studies
- Simplify research method to increase amount and quality of data
- Refine and improve conceptual model to address technology issues
- Focus on Internet retailing firms and combine with use of case studies