
Scaled Agile Framework® 6.0
28 Public Sector Anti-Patterns and Antidotes



“To thrive in the digital age you 
need business agility.

This new way of working requires a 
new mindset, values, principles, 
and practices.”

—Dean Leffingwell, Creator of SAFe

- 2 -© Scaled Agile, Inc.



What is the Scaled Agile Framework (SAFe)?

- 3 -© Scaled Agile, Inc.

→ SAFe is a goal-driven framework to rapidly create innovatively new products and services.
→ SAFe is the world’s leading lean and agile thinking operating framework for enterprise agility.
→ SAFe integrates the power of Lean, Agile, Design Thinking, DevSecOps, AI, and Cloud.
→ SAFe is a comprehensive operating system that helps enterprises thrive in the digital age.
→ SAFe helps to deliver innovative high-quality products and services fast and predictably.
→ SAFe helps enterprises, portfolios, large solutions, and product and service teams improve, 

grow, and respond to change.
→ SAFe is used by more than 20,000 international enterprises and more than 1,000,000 

practitioners have been trained and certified.
→ SAFe is adaptable to product and services ranging from one to hundreds of agile teams.
→ SAFe continuously improves on regular basis to ensure enterprises are on the leading edge.
→ SAFe has a large ecosystem of products, services, training, tools, metrics, workers, etc.
Footnote. SAFe is often misapplied to manage people like high-precision scope-driven manufacturing systems.



28 Public Sector Anti-Patterns and Antidotes of SAFe 6.0

- 4 -

Scope-Driven Contracts Using Tasks vs. Stories

Big Up Front Requirements No Architectural Runways

Buyer-Supplier Inequality No Agile Product Management

Supplier Dominance Buyer-Supplier Role Division

Horizontal Solution Slicing Supplier Only Agile Roles

No Technology Visionaries Uneven Team Resource Loading

Outdated Legacy Systems Death by Marathon Meetings

Outdated Development Tech Lack of Process Tailoring

Long Lead Hardware Items Complex or Expensive ALMs

Feature Factory Sweatshops Can't Think "Out of the Box"

Integrated Master Schedules No "One Team" Culture

Seeking Full Utilization Treating People Like Automatons

Manufacturing Statistics Big Bang Testing Events

Overmeasuring Performance Independent Manual Testing

1 15

2 16

3 17

4 18

5 19

6 20

7 21

8 22

9 23

10 24

11 25

12 26

13 27

14 28



Scope-Driven 
Contracts

Anti-Pattern
→ Specifying the concise scope of a contract in SOW, 

business requirements documents, design specifications, 
or agile backlogs (i.e., epics, features, stories, etc.).

Antidote
→ Specify the Lean-Agile “process” framework to be used.
→ Specify practices, roles, and responsibilities to be used.
→ Let the scope of the contract emerge from the framework.

Example
→ Allow the product or service scope emerge from road-

mapping, lean-agile product management, quarterly 
planning, iteration planning, etc.

1

Result
→ Too much WIP
→ Late, overbudget
→ Poor performance - 5 -



Big Up Front 
Requirements 
or Modeling 

Teams

2
Anti-Pattern
→ Forming a full-time requirements or systems modeling 

team to create requirements, specifications, system 
models, wireframes, UX models, etc.

Antidote
→ Apply lean-agile product management best practices.
→ Apply Lean UX thinking principles, practices, and methods.
→ Design just-enough, just-in-time business experiments.

Example
→ Use one-week design sprints with minimalistic Lean UX 

models in dual-agile development cycles for each major 
business experiment, quarter, or other planning interval.Result

→ Too much WIP
→ Late, overbudget
→ Poor performance - 6 -



Buyer-
Supplier 

Inequality

Anti-Pattern
→ Establishing high power-distance between buyers and 

suppliers by designating public servants to function as 
leaders and managers and suppliers as silent developers.

Antidote
→ Form a badgeless “one-team” culture and team-of-teams.
→ Allow suppliers to be leaders and buyers to be developers.
→ Maximize collaboration, participation, and transparency.

Example
→ Allow suppliers to have key roles and responsibilities in the 

lean-agile framework, integrate product and process 
events, and share decision-making rights and privileges.

3

Result
→ Suboptimal decisions
→ Poor morale, attrition
→ Poor performance - 7 -



Supplier 
Dominance

Anti-Pattern
→ Delegate all decision-making rights, power, status, roles, 

and responsibilities to the supplier or lead integrator (to the 
exclusion of public sector governance bodies and teams).

Antidote
→ Form governance bodies with both buyers and suppliers.
→ Ensure everyone is trained in the lean-agile framework.
→ Empower joint governance bodies to make key decisions.

Example
→ Form solution and product management and engineering 

teams from both buyers and suppliers, which includes 
development value streams and teams-of-teams.

4

Result
→ Suboptimal decisions
→ Very poor solution quality
→ Substitution, corner cutting - 8 -



Horizontal 
Solution 
Slicing

Anti-Pattern
→ Forming external and internal development value streams, 

teams-of-teams, and agile teams along horizontal layers 
(i.e., user interface, middleware, backend, etc.).

Antidote
→ Specify vertically sliced MVPs that cross solution layers.
→ Form development value streams around vertical MVPs.
→ Form just-in-time architectural runways and enabler MVPs.

Example
→ Form solution and product management and engineering 

MVP teams from both buyers and suppliers, which 
vertically span user interfaces, middleware, backend, etc.

5

Result
→ Suboptimal decisions
→ Poor synchronization
→ Chronic inconsistency - 9 -



Technology 
Visionaries 
are Absent

Anti-Pattern
→ Forming scope, cost, and performance-driven leadership 

teams to implement change orders to modernize an old 
outdated legacy system, data center, or technology stack.

Antidote
→ Hire and appoint a small team of technology visionaries.
→ Seek to form a modern technological solution on purpose.
→ Focus on a near-term highly user-centered software MVP.

Example
→ Form small mobile apps which can be implemented quickly 

and inexpensively instead of patching or modernizing an 
outdated multi-decade old brick-n-mortar data center.

6

Result
→ Too much WIP
→ Poor morale, attrition
→ Very poor solution quality - 10 -



Outdated 
Legacy 

Systems

Anti-Pattern
→ Intense fixation on sunk costs, tossing good money away, 

and unchecked escalation of information technology 
budgets and costs to rescue obsolete legacy systems.

Antidote
→ Use guardrails, investment horizons, and portfolio budgets.
→ Balance portfolio with past, present, and future solutions.
→ Replace obsolete legacy systems vs. keep them forever.

Example
→ Replace data centers with commercial cloud services, 

build small modern applications rather than preserve large 
old ones, and use software vs. hardware when possible.

7

Result
→ Long, lead-item types
→ High WIP, large batches
→ Poor quality, performance - 11 -



Outdated 
Development 
Technology

Anti-Pattern
→ Locked into obsolete technology stacks, development tools 

and systems, and technological skills that are no longer 
supported by vendors, consulting firms, and markets.

Antidote
→ Use new operating systems and programming languages.
→ Seek to replace legacy services with modern tech stacks.
→ Proactively replace outdated technologies with new ones.

Example
→ Decompose monolithic legacy system architectures into 

highly modularized microservices, refactor and age off 
unneeded bloat, and insert newer high-quality technology.

8

Result
→ Poor morale, attrition
→ High WIP, large batches
→ Poor quality, performance - 12 -



Long Lead 
Brick-n-Mortar 

Hardware 
Items

Anti-Pattern
→ Developing capital-intensive solutions such as custom, on-

premises data centers, refreshing legacy system data 
centers with new hardware, or building hardware solutions.

Antidote
→ Use commercial cloud services whenever possible.
→ Develop small software MVPs such as mobile apps.
→ Avoid capital intensive hardware items whenever possible.

Example
→ Design small software MVPs or mobile apps that can be 

downloaded from mobile app stores, design cloud based 
microservices, and host these on commercial clouds.

9

Result
→ High WIP, large batches
→ Schedule, cost overruns
→ Poor quality, performance - 13 -



Feature 
Factory 

Sweatshops

Anti-Pattern
→ Filling lean-agile backlogs with mountains of business 

requirements, UX wireframes, system models, epics, 
features, and user stories contracted to lowest bidder.

Antidote
→ Apply lean-agile frameworks to specify infrequent MVPs.
→ Limit WIP and batch size to create a sustainable pace.
→ Create an environment of innovation and discovery.

Example
→ Establish a development value stream or team-of-teams to 

explore a product or service roadmap or portfolio of small 
business experiments to seek and discover user needs.

10

Result
→ Poor morale, attrition
→ Schedule, cost overruns
→ High utilization, wait times - 14 -



Integrated 
Master 

Schedules 
and EVM

Anti-Pattern
→ Investing in expensive integrated master scheduling teams 

to run scenarios and simulations for implementing large 
requirements backlogs to save outdated legacy systems.

Antidote
→ Use lean-agile frameworks to specify infrequent MVPs.
→ Create modern software-intensive replacement MVPs.
→ Invest in smaller batches of limited business experiments.

Example
→ Apply informal project networks, feature and story maps, 

and planning interval events to build small batches of 
business experiments and software MVPs with low WIP.

11

Result
→ Schedule, cost overruns
→ High WIP, large batches
→ High utilization, wait times - 15 -



Seeking 
Economies of 
Scale and Full 

Utilization

Anti-Pattern
→ Applying on-prem software factory concepts from the 

1970s to achieve economies of scale and full utilization of 
limited computer programmers to reduce cost of high WIP.

Antidote
→ Reduce utilization and WIP to create sustainable pace.
→ Create long lived teams vs. matrixing and multitasking.
→ Empower teams to identify small business experiments.

Example
→ Incentivize bottoms up innovation riptides where teams co-

develop product and service visions, roadmaps, and 
infrequent low-WIP experimental MVPs and solutions.

12

Result
→ Poor morale, attrition
→ High utilization, wait times
→ Poor customer satisfaction - 16 -



Manufacturing 
Statistics and 

Story Point 
Physics

Anti-Pattern
→ Measuring performance in minutes and hours with a 

stopwatch like Tayloristic Kanban manufacturing factories 
and machines to achieve full utilization and optimum WIP.

Antidote
→ Use qualitative measures of performance when necessary.
→ Improve speed and performance with low WIP/batchsize.
→ Encourage and apply goal vs. scope-oriented thinking.

Example
→ Incentivize and coach teams to establish valuable but 

achievable goals, deliver small timeboxed experiments, 
and use innovation metrics to gauge end-user outcomes.

13

Result
→ Poor morale, attrition
→ High utilization, wait times
→ Unsustainable pace, burnout - 17 -



Overmeasuring
Performance in 

Minutes and 
Seconds

Anti-Pattern
→ Establishing too many metrics, measures, and models to 

predict outcomes based on lagging indicators in a vain 
attempt to achieve overloaded schedules and backlogs.

Antidote
→ Use fewer measures rather than more measures.
→ Use qualitative measures of performance when necessary.
→ Focus on value adding outcomes vs. track-and-field stats.

Example
→ Incentivize, empower, and coach teams to establish 

valuable, achievable, and qualitative goals, deliver small 
timeboxed experiments, and use softer innovation metrics.

14

Result
→ Poor morale, attrition
→ High utilization, wait times
→ Unsustainable pace, burnout - 18 -



Decomposing 
Stories into 
Individual 

Tasks

Anti-Pattern
→ Decomposing stories into tasks that are assigned to 

individuals for full utilization, maximum micromanagement 
control, implementing high WIP, and eliminating freeriders.

Antidote
→ Implement all stories as teams vs. individuals.
→ Apply pair programming principles and practices.
→ Balance utilization and valuable performance goals.

Example
→ Specify small number of user stories per iteration to 

achieve the end-user value of small business experiments 
to be implemented in small agile teams (i.e., less is more).

15

Result
→ Poor morale, attrition
→ High WIP, large batches
→ High utilization, wait times - 19 -



Not Using 
Architectural 

Runways
or Enablers

- 20 -

Anti-Pattern
→ Filling backlogs with functional requirements on a tight 

schedule and low budget while discovery, runways, and 
spikes are performed for free on evenings and weekends.

Antidote
→ Plan discovery, enablers, and architectural runways.
→ Form full time discovery and architectural runway teams.
→ Allow teams to alternate between features and enablers.

Example
→ Form enabler teams, epics, features, and stories to build 

just-in-time shared services, platforms, and tools to 
improve quality, speed, sustainability, and innovation.

16

Result
→ Poor morale, attrition
→ Schedule, cost overruns
→ Unsustainable pace, burnout



No Lean-Agile 
Product 

Management

- 21 -

Anti-Pattern
→ Substituting legacy business requirements specifications, 

requirements and modeling teams, and integrated master 
schedules for lean-agile product management teams.

Antidote
→ Create a formal lean-agile product management team.
→ Train and certify team in Lean UX principles and practices.
→ Specify just-enough, just-in-time business experiments.

Example
→ Have a small lean-agile product management team use 

one-week design sprints to form individual Lean UX 
business experiments which can be tested in a few sprints.

17

Result
→ High WIP, large batches
→ High utilization, wait times
→ Poor quality, performance



Buyer-
Supplier Role 

Division

- 22 -

Anti-Pattern
→ Designating buyers in primary decision-making roles like 

solution and product management, development value 
stream and agile team process facilitation, etc.

Antidote
→ Share roles and responsibilities with buyers and suppliers.
→ Integrate and distribute buyers and suppliers into teams.
→ Coach consistent principles and practices across teams.

Example
→ Integrate and alternate buyers and suppliers into teams 

and roles (i.e., one team has a buyer product owner or 
Scrummaster, while another has supplier leadership).

18

Result
→ High WIP, large batches
→ High utilization, wait times
→ Poor quality, performance



Supplier Side 
Roles and 

Responsibilities

- 23 -

Anti-Pattern
→ Forming predominantly supplier side lean-agile 

development value streams and teams-of-teams with 
supplier side only roles and responsibilities.

Antidote
→ Share roles and responsibilities with buyers and suppliers.
→ Integrate and distribute buyers and suppliers into teams.
→ Coach consistent principles and practices across teams.

Example
→ Integrate and alternate buyers and suppliers into teams 

and roles (i.e., one team has a buyer product owner or 
Scrummaster, while another has supplier leadership).

19

Result
→ Suboptimal decisions
→ Poor morale, attrition
→ Poor performance



Uneven Team 
Resource 
Loading

- 24 -

Anti-Pattern
→ 80% to 90% of teams perform management and 

administration, while 10% to 20% of the teams perform 
value-adding development of product and service features.

Antidote
→ Designate more development than management teams.
→ Distribute feature workload among development teams.
→ Seek to rectify systemic over and under team utilization.

Example
→ Form development value streams where 80% of agile 

teams are small lean-agile development teams and 
personnel are dynamically distributed based on workload.

20

Result
→ Poor morale, attrition
→ High utilization, wait times
→ Bottlenecks, longer queues



Death by 
Marathon 
Meetings

- 25 -

Anti-Pattern
→ Scheduling all day solution and product management 

meetings, technical interchanges, Scrum meetings, or 
daily standups and keeping people as long as possible.

Antidote
→ Use short formal meetings as infrequently as possible.
→ Encourage people to self-organize to form deliverables.
→ Error on the side of meetings under 30 minutes if possible.

Example
→ Have teams do lean-agile product management activities 

without large formal meetings, use short early Scrum 
meetings when necessary, and half this time if possible.

21

Result
→ Poor morale, attrition
→ Low productivity, velocity
→ Minimum business value



Lack of 
Process 

Tailoring, Self 
Organization, 

or Streamlining

- 26 -

Anti-Pattern
→ Mandating all teams on development value streams to 

apply the longest possible and most frequent textbook 
lean-agile framework events, ceremonies, and meetings.

Antidote
→ Allow teams to self-organize to achieve process goals.
→ Allow teams to tailor agile processes based on context.
→ Achieve a balance of formal and informal process needs.

Example
→ Teams doing routine or labor-intensive work may be able 

to combine and streamline events, while teams doing 
highly creative work may require rigorous brainstorming.

22

Result
→ Low productivity, velocity
→ Minimum business value
→ Bottlenecks, longer queues



Complex or 
Expensive 

ALMs

- 27 -

Anti-Pattern
→ Purchasing complex and expensive ALMs that require 

multimillion dollar investments in full-time programming 
teams, expensive training, and labor-intensive data entry.

Antidote
→ Use the simplest possible ALM tools for large teams.
→ Use low-cost commercial cloud services when possible.
→ Achieve fine balance of manual and automated reporting.

Example
→ Have a development value stream use Confluence and 

Jira for planning interval artifacts and tracking, and other 
simple visual collaborative brainstorming tools like Mural.

23

Result
→ Excessive training budget
→ Entry barrier, learning curve
→ Lower return on investments



Failure to 
Think "Out of 

the Box"

- 28 -

Anti-Pattern
→ Mindlessly following prescriptive lean-agile frameworks, 

recommended best practices, counterproductive rules and 
sequences, and disallowing deviations or customization.

Antidote
→ First, consider the basic principles and practices.
→ Focus on the “commander’s intent” vs. letter-of-the-law.
→ Zoom-in-and-out and consider the opposite if applicable.

Example
→ Vary centralization and decentralization, top-down vs. 

bottoms up, push vs. pull, low vs. high WIP, achievable vs. 
stretch goal, and reverse events if they cause train wrecks.

24

Result
→ Poor morale, attrition
→ Low productivity, velocity
→ Bottlenecks, longer queues



No "One Team" 
Culture and 
Cooperation

- 29 -

Anti-Pattern
→ Competition between buyers and suppliers, product 

owners and Scrummasters, development value streams, 
individual agile teams, and the individuals within teams.

Antidote
→ Create and incentivize a “one-team” mindset and culture.
→ Create shared goals and reward teamwork vs. individuals.
→ Teams need to cooperate to achieve value stream goals.

Example
→ Incentivize development value streams to form and 

achieve a “one-team” mindset, work together to achieve 
planning interval goals, and seek out opportunities to help.

25

Result
→ Low productivity, velocity
→ Bottlenecks, longer queues
→ Minimum business value



Treating People 
Like 

Automatons or 
Interchangeable 
Cogs in a Wheel

- 30 -

Anti-Pattern
→ Giving developers planning interval objectives, epics, 

features, and stories without bottoms up self organization 
and selection (while leadership leads people over a cliff).

Antidote
→ Use built-in process improvement events and ceremonies.
→ Incentivize the identification of systemic bottlenecks.
→ Fix bottlenecks instead of hiding your head in the sand.

Example
→ If a large monolithic legacy system has unreasonable 

bottlenecks and issues, then incentivize and empower 
teams to identify and repair them vs. ignoring bottlenecks.

26

Result
→ Poor morale, attrition
→ Low productivity, velocity
→ Minimum business value



Late Big Bang 
Quarterly 

Testing Events

- 31 -

Anti-Pattern
→ Scheduling labor intensive big bang testing events in 

infrequent intervals (i.e., three, six, nine, or twelve months 
or more), which often occur during holidays or Summers.

Antidote
→ Apply development testing (i.e., one piece workflow).
→ Apply test and behavior driven development practices.
→ Automate as much testing as possible (as you go along).

Example
→ Acceptance criteria for user stories must include writing 

automated tests in advance, check into version control, 
and running and passing each test before moving on.

27

Result
→ Poor morale, attrition
→ Low productivity, velocity
→ Bottlenecks, longer queues



Independent 
Manual Testing 

Teams

- 32 -

Anti-Pattern
→ Forming large manual testing teams, writing manual test 

procedures, and independently running regression tests in 
long infrequent intervals while developers go on vacation.

Antidote
→ Apply development testing (i.e., one piece workflow).
→ Apply test and behavior driven development practices.
→ Automate as much testing as possible (as you go along).

Example
→ Develop and apply a cloud based continuous integration, 

continuous delivery, and DevOps pipeline, write and 
contribute development tests, and run them continuously.

28

Result
→ Poor morale, attrition
→ Low productivity, velocity
→ Bottlenecks, longer queues




	Scaled Agile Framework® 6.0
	“To thrive in the digital age you need business agility.��This new way of working requires a new mindset, values, principles, and practices.”
	Slide Number 3
	28 Public Sector Anti-Patterns and Antidotes of SAFe 6.0
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33

