
Scaled Agile Framework® 6.0
28 Public Sector Anti-Patterns and Antidotes



“To thrive in the digital age you 
need business agility.

This new way of working requires a 
new mindset, values, principles, 
and practices.”

—Dean Leffingwell, Creator of SAFe
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What is the Scaled Agile Framework (SAFe)?
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→ SAFe is a goal-driven framework to rapidly create innovatively new products and services.
→ SAFe is the world’s leading lean and agile thinking operating framework for enterprise agility.
→ SAFe integrates the power of Lean, Agile, Design Thinking, DevSecOps, AI, and Cloud.
→ SAFe is a comprehensive operating system that helps enterprises thrive in the digital age.
→ SAFe helps to deliver innovative high-quality products and services fast and predictably.
→ SAFe helps enterprises, portfolios, large solutions, and product and service teams improve, 

grow, and respond to change.
→ SAFe is used by more than 20,000 international enterprises and more than 1,000,000 

practitioners have been trained and certified.
→ SAFe is adaptable to product and services ranging from one to hundreds of agile teams.
→ SAFe continuously improves on regular basis to ensure enterprises are on the leading edge.
→ SAFe has a large ecosystem of products, services, training, tools, metrics, workers, etc.
Footnote. SAFe is often misapplied to manage people like high-precision scope-driven manufacturing systems.



28 Public Sector Anti-Patterns and Antidotes of SAFe 6.0
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Scope-Driven 
Contracts

Anti-Pattern
→ Specifying the concise scope of a contract in SOW, 

business requirements documents, design specifications, 
or agile backlogs (i.e., epics, features, stories, etc.).

Antidote
→ Specify the Lean-Agile “process” framework to be used.
→ Specify practices, roles, and responsibilities to be used.
→ Let the scope of the contract emerge from the framework.

Example
→ Allow the product or service scope emerge from road-

mapping, lean-agile product management, quarterly 
planning, iteration planning, etc.

1

Result
→ Too much WIP
→ Late, overbudget
→ Poor performance - 5 -



Big Up Front 
Requirements 
or Modeling 

Teams

2
Anti-Pattern
→ Forming a full-time requirements or systems modeling 

team to create requirements, specifications, system 
models, wireframes, UX models, etc.

Antidote
→ Apply lean-agile product management best practices.
→ Apply Lean UX thinking principles, practices, and methods.
→ Design just-enough, just-in-time business experiments.

Example
→ Use one-week design sprints with minimalistic Lean UX 

models in dual-agile development cycles for each major 
business experiment, quarter, or other planning interval.Result

→ Too much WIP
→ Late, overbudget
→ Poor performance - 6 -



Buyer-
Supplier 

Inequality

Anti-Pattern
→ Establishing high power-distance between buyers and 

suppliers by designating public servants to function as 
leaders and managers and suppliers as silent developers.

Antidote
→ Form a badgeless “one-team” culture and team-of-teams.
→ Allow suppliers to be leaders and buyers to be developers.
→ Maximize collaboration, participation, and transparency.

Example
→ Allow suppliers to have key roles and responsibilities in the 

lean-agile framework, integrate product and process 
events, and share decision-making rights and privileges.
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Result
→ Suboptimal decisions
→ Poor morale, attrition
→ Poor performance - 7 -



Supplier 
Dominance

Anti-Pattern
→ Delegate all decision-making rights, power, status, roles, 

and responsibilities to the supplier or lead integrator (to the 
exclusion of public sector governance bodies and teams).

Antidote
→ Form governance bodies with both buyers and suppliers.
→ Ensure everyone is trained in the lean-agile framework.
→ Empower joint governance bodies to make key decisions.

Example
→ Form solution and product management and engineering 

teams from both buyers and suppliers, which includes 
development value streams and teams-of-teams.
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Result
→ Suboptimal decisions
→ Very poor solution quality
→ Substitution, corner cutting - 8 -



Horizontal 
Solution 
Slicing

Anti-Pattern
→ Forming external and internal development value streams, 

teams-of-teams, and agile teams along horizontal layers 
(i.e., user interface, middleware, backend, etc.).

Antidote
→ Specify vertically sliced MVPs that cross solution layers.
→ Form development value streams around vertical MVPs.
→ Form just-in-time architectural runways and enabler MVPs.

Example
→ Form solution and product management and engineering 

MVP teams from both buyers and suppliers, which 
vertically span user interfaces, middleware, backend, etc.
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Result
→ Suboptimal decisions
→ Poor synchronization
→ Chronic inconsistency - 9 -



Technology 
Visionaries 
are Absent

Anti-Pattern
→ Forming scope, cost, and performance-driven leadership 

teams to implement change orders to modernize an old 
outdated legacy system, data center, or technology stack.

Antidote
→ Hire and appoint a small team of technology visionaries.
→ Seek to form a modern technological solution on purpose.
→ Focus on a near-term highly user-centered software MVP.

Example
→ Form small mobile apps which can be implemented quickly 

and inexpensively instead of patching or modernizing an 
outdated multi-decade old brick-n-mortar data center.

6

Result
→ Too much WIP
→ Poor morale, attrition
→ Very poor solution quality - 10 -



Outdated 
Legacy 

Systems

Anti-Pattern
→ Intense fixation on sunk costs, tossing good money away, 

and unchecked escalation of information technology 
budgets and costs to rescue obsolete legacy systems.

Antidote
→ Use guardrails, investment horizons, and portfolio budgets.
→ Balance portfolio with past, present, and future solutions.
→ Replace obsolete legacy systems vs. keep them forever.

Example
→ Replace data centers with commercial cloud services, 

build small modern applications rather than preserve large 
old ones, and use software vs. hardware when possible.
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Result
→ Long, lead-item types
→ High WIP, large batches
→ Poor quality, performance - 11 -



Outdated 
Development 
Technology

Anti-Pattern
→ Locked into obsolete technology stacks, development tools 

and systems, and technological skills that are no longer 
supported by vendors, consulting firms, and markets.

Antidote
→ Use new operating systems and programming languages.
→ Seek to replace legacy services with modern tech stacks.
→ Proactively replace outdated technologies with new ones.

Example
→ Decompose monolithic legacy system architectures into 

highly modularized microservices, refactor and age off 
unneeded bloat, and insert newer high-quality technology.
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Result
→ Poor morale, attrition
→ High WIP, large batches
→ Poor quality, performance - 12 -



Long Lead 
Brick-n-Mortar 

Hardware 
Items

Anti-Pattern
→ Developing capital-intensive solutions such as custom, on-

premises data centers, refreshing legacy system data 
centers with new hardware, or building hardware solutions.

Antidote
→ Use commercial cloud services whenever possible.
→ Develop small software MVPs such as mobile apps.
→ Avoid capital intensive hardware items whenever possible.

Example
→ Design small software MVPs or mobile apps that can be 

downloaded from mobile app stores, design cloud based 
microservices, and host these on commercial clouds.
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Result
→ High WIP, large batches
→ Schedule, cost overruns
→ Poor quality, performance - 13 -



Feature 
Factory 

Sweatshops

Anti-Pattern
→ Filling lean-agile backlogs with mountains of business 

requirements, UX wireframes, system models, epics, 
features, and user stories contracted to lowest bidder.

Antidote
→ Apply lean-agile frameworks to specify infrequent MVPs.
→ Limit WIP and batch size to create a sustainable pace.
→ Create an environment of innovation and discovery.

Example
→ Establish a development value stream or team-of-teams to 

explore a product or service roadmap or portfolio of small 
business experiments to seek and discover user needs.
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Result
→ Poor morale, attrition
→ Schedule, cost overruns
→ High utilization, wait times - 14 -



Integrated 
Master 

Schedules 
and EVM

Anti-Pattern
→ Investing in expensive integrated master scheduling teams 

to run scenarios and simulations for implementing large 
requirements backlogs to save outdated legacy systems.

Antidote
→ Use lean-agile frameworks to specify infrequent MVPs.
→ Create modern software-intensive replacement MVPs.
→ Invest in smaller batches of limited business experiments.

Example
→ Apply informal project networks, feature and story maps, 

and planning interval events to build small batches of 
business experiments and software MVPs with low WIP.
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Result
→ Schedule, cost overruns
→ High WIP, large batches
→ High utilization, wait times - 15 -



Seeking 
Economies of 
Scale and Full 

Utilization

Anti-Pattern
→ Applying on-prem software factory concepts from the 

1970s to achieve economies of scale and full utilization of 
limited computer programmers to reduce cost of high WIP.

Antidote
→ Reduce utilization and WIP to create sustainable pace.
→ Create long lived teams vs. matrixing and multitasking.
→ Empower teams to identify small business experiments.

Example
→ Incentivize bottoms up innovation riptides where teams co-

develop product and service visions, roadmaps, and 
infrequent low-WIP experimental MVPs and solutions.
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Result
→ Poor morale, attrition
→ High utilization, wait times
→ Poor customer satisfaction - 16 -



Manufacturing 
Statistics and 

Story Point 
Physics

Anti-Pattern
→ Measuring performance in minutes and hours with a 

stopwatch like Tayloristic Kanban manufacturing factories 
and machines to achieve full utilization and optimum WIP.

Antidote
→ Use qualitative measures of performance when necessary.
→ Improve speed and performance with low WIP/batchsize.
→ Encourage and apply goal vs. scope-oriented thinking.

Example
→ Incentivize and coach teams to establish valuable but 

achievable goals, deliver small timeboxed experiments, 
and use innovation metrics to gauge end-user outcomes.
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Result
→ Poor morale, attrition
→ High utilization, wait times
→ Unsustainable pace, burnout - 17 -



Overmeasuring
Performance in 

Minutes and 
Seconds

Anti-Pattern
→ Establishing too many metrics, measures, and models to 

predict outcomes based on lagging indicators in a vain 
attempt to achieve overloaded schedules and backlogs.

Antidote
→ Use fewer measures rather than more measures.
→ Use qualitative measures of performance when necessary.
→ Focus on value adding outcomes vs. track-and-field stats.

Example
→ Incentivize, empower, and coach teams to establish 

valuable, achievable, and qualitative goals, deliver small 
timeboxed experiments, and use softer innovation metrics.
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Result
→ Poor morale, attrition
→ High utilization, wait times
→ Unsustainable pace, burnout - 18 -



Decomposing 
Stories into 
Individual 

Tasks

Anti-Pattern
→ Decomposing stories into tasks that are assigned to 

individuals for full utilization, maximum micromanagement 
control, implementing high WIP, and eliminating freeriders.

Antidote
→ Implement all stories as teams vs. individuals.
→ Apply pair programming principles and practices.
→ Balance utilization and valuable performance goals.

Example
→ Specify small number of user stories per iteration to 

achieve the end-user value of small business experiments 
to be implemented in small agile teams (i.e., less is more).
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Result
→ Poor morale, attrition
→ High WIP, large batches
→ High utilization, wait times - 19 -



Not Using 
Architectural 

Runways
or Enablers

- 20 -

Anti-Pattern
→ Filling backlogs with functional requirements on a tight 

schedule and low budget while discovery, runways, and 
spikes are performed for free on evenings and weekends.

Antidote
→ Plan discovery, enablers, and architectural runways.
→ Form full time discovery and architectural runway teams.
→ Allow teams to alternate between features and enablers.

Example
→ Form enabler teams, epics, features, and stories to build 

just-in-time shared services, platforms, and tools to 
improve quality, speed, sustainability, and innovation.
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Result
→ Poor morale, attrition
→ Schedule, cost overruns
→ Unsustainable pace, burnout



No Lean-Agile 
Product 

Management

- 21 -

Anti-Pattern
→ Substituting legacy business requirements specifications, 

requirements and modeling teams, and integrated master 
schedules for lean-agile product management teams.

Antidote
→ Create a formal lean-agile product management team.
→ Train and certify team in Lean UX principles and practices.
→ Specify just-enough, just-in-time business experiments.

Example
→ Have a small lean-agile product management team use 

one-week design sprints to form individual Lean UX 
business experiments which can be tested in a few sprints.
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Result
→ High WIP, large batches
→ High utilization, wait times
→ Poor quality, performance



Buyer-
Supplier Role 

Division

- 22 -

Anti-Pattern
→ Designating buyers in primary decision-making roles like 

solution and product management, development value 
stream and agile team process facilitation, etc.

Antidote
→ Share roles and responsibilities with buyers and suppliers.
→ Integrate and distribute buyers and suppliers into teams.
→ Coach consistent principles and practices across teams.

Example
→ Integrate and alternate buyers and suppliers into teams 

and roles (i.e., one team has a buyer product owner or 
Scrummaster, while another has supplier leadership).
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Result
→ High WIP, large batches
→ High utilization, wait times
→ Poor quality, performance



Supplier Side 
Roles and 

Responsibilities

- 23 -

Anti-Pattern
→ Forming predominantly supplier side lean-agile 

development value streams and teams-of-teams with 
supplier side only roles and responsibilities.

Antidote
→ Share roles and responsibilities with buyers and suppliers.
→ Integrate and distribute buyers and suppliers into teams.
→ Coach consistent principles and practices across teams.

Example
→ Integrate and alternate buyers and suppliers into teams 

and roles (i.e., one team has a buyer product owner or 
Scrummaster, while another has supplier leadership).

19

Result
→ Suboptimal decisions
→ Poor morale, attrition
→ Poor performance



Uneven Team 
Resource 
Loading
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Anti-Pattern
→ 80% to 90% of teams perform management and 

administration, while 10% to 20% of the teams perform 
value-adding development of product and service features.

Antidote
→ Designate more development than management teams.
→ Distribute feature workload among development teams.
→ Seek to rectify systemic over and under team utilization.

Example
→ Form development value streams where 80% of agile 

teams are small lean-agile development teams and 
personnel are dynamically distributed based on workload.
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Result
→ Poor morale, attrition
→ High utilization, wait times
→ Bottlenecks, longer queues



Death by 
Marathon 
Meetings
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Anti-Pattern
→ Scheduling all day solution and product management 

meetings, technical interchanges, Scrum meetings, or 
daily standups and keeping people as long as possible.

Antidote
→ Use short formal meetings as infrequently as possible.
→ Encourage people to self-organize to form deliverables.
→ Error on the side of meetings under 30 minutes if possible.

Example
→ Have teams do lean-agile product management activities 

without large formal meetings, use short early Scrum 
meetings when necessary, and half this time if possible.

21

Result
→ Poor morale, attrition
→ Low productivity, velocity
→ Minimum business value



Lack of 
Process 

Tailoring, Self 
Organization, 

or Streamlining

- 26 -

Anti-Pattern
→ Mandating all teams on development value streams to 

apply the longest possible and most frequent textbook 
lean-agile framework events, ceremonies, and meetings.

Antidote
→ Allow teams to self-organize to achieve process goals.
→ Allow teams to tailor agile processes based on context.
→ Achieve a balance of formal and informal process needs.

Example
→ Teams doing routine or labor-intensive work may be able 

to combine and streamline events, while teams doing 
highly creative work may require rigorous brainstorming.

22

Result
→ Low productivity, velocity
→ Minimum business value
→ Bottlenecks, longer queues



Complex or 
Expensive 

ALMs

- 27 -

Anti-Pattern
→ Purchasing complex and expensive ALMs that require 

multimillion dollar investments in full-time programming 
teams, expensive training, and labor-intensive data entry.

Antidote
→ Use the simplest possible ALM tools for large teams.
→ Use low-cost commercial cloud services when possible.
→ Achieve fine balance of manual and automated reporting.

Example
→ Have a development value stream use Confluence and 

Jira for planning interval artifacts and tracking, and other 
simple visual collaborative brainstorming tools like Mural.

23

Result
→ Excessive training budget
→ Entry barrier, learning curve
→ Lower return on investments



Failure to 
Think "Out of 

the Box"

- 28 -

Anti-Pattern
→ Mindlessly following prescriptive lean-agile frameworks, 

recommended best practices, counterproductive rules and 
sequences, and disallowing deviations or customization.

Antidote
→ First, consider the basic principles and practices.
→ Focus on the “commander’s intent” vs. letter-of-the-law.
→ Zoom-in-and-out and consider the opposite if applicable.

Example
→ Vary centralization and decentralization, top-down vs. 

bottoms up, push vs. pull, low vs. high WIP, achievable vs. 
stretch goal, and reverse events if they cause train wrecks.

24

Result
→ Poor morale, attrition
→ Low productivity, velocity
→ Bottlenecks, longer queues



No "One Team" 
Culture and 
Cooperation

- 29 -

Anti-Pattern
→ Competition between buyers and suppliers, product 

owners and Scrummasters, development value streams, 
individual agile teams, and the individuals within teams.

Antidote
→ Create and incentivize a “one-team” mindset and culture.
→ Create shared goals and reward teamwork vs. individuals.
→ Teams need to cooperate to achieve value stream goals.

Example
→ Incentivize development value streams to form and 

achieve a “one-team” mindset, work together to achieve 
planning interval goals, and seek out opportunities to help.

25

Result
→ Low productivity, velocity
→ Bottlenecks, longer queues
→ Minimum business value



Treating People 
Like 

Automatons or 
Interchangeable 
Cogs in a Wheel

- 30 -

Anti-Pattern
→ Giving developers planning interval objectives, epics, 

features, and stories without bottoms up self organization 
and selection (while leadership leads people over a cliff).

Antidote
→ Use built-in process improvement events and ceremonies.
→ Incentivize the identification of systemic bottlenecks.
→ Fix bottlenecks instead of hiding your head in the sand.

Example
→ If a large monolithic legacy system has unreasonable 

bottlenecks and issues, then incentivize and empower 
teams to identify and repair them vs. ignoring bottlenecks.

26

Result
→ Poor morale, attrition
→ Low productivity, velocity
→ Minimum business value



Late Big Bang 
Quarterly 

Testing Events

- 31 -

Anti-Pattern
→ Scheduling labor intensive big bang testing events in 

infrequent intervals (i.e., three, six, nine, or twelve months 
or more), which often occur during holidays or Summers.

Antidote
→ Apply development testing (i.e., one piece workflow).
→ Apply test and behavior driven development practices.
→ Automate as much testing as possible (as you go along).

Example
→ Acceptance criteria for user stories must include writing 

automated tests in advance, check into version control, 
and running and passing each test before moving on.

27

Result
→ Poor morale, attrition
→ Low productivity, velocity
→ Bottlenecks, longer queues



Independent 
Manual Testing 

Teams

- 32 -

Anti-Pattern
→ Forming large manual testing teams, writing manual test 

procedures, and independently running regression tests in 
long infrequent intervals while developers go on vacation.

Antidote
→ Apply development testing (i.e., one piece workflow).
→ Apply test and behavior driven development practices.
→ Automate as much testing as possible (as you go along).

Example
→ Develop and apply a cloud based continuous integration, 

continuous delivery, and DevOps pipeline, write and 
contribute development tests, and run them continuously.

28

Result
→ Poor morale, attrition
→ Low productivity, velocity
→ Bottlenecks, longer queues
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